Site Map | Polytopes | Dynkin Diagrams | Vertex Figures, etc. | Incidence Matrices | Index |
Within Verhandlingen der koninklijke Akademie van Wetenschappen, eerste Sectie, Deel XI (Amsterdam, 1913) Mrs. A. Boole Stott published the "Geometrical deduction of semiregular from regular polytopes and space fillings". What is outlined there essentially boils down, by using Dynkin symbols, how polytopes are related which differ just in the mark of a single node.
If applied onto convex shapes only one might consider the polytope being contained within the rubber skin of a balloon. Then pulling apart the vertices, all members of an edge class, those of a face class, or of any other bounding elements would just result in new edges (and higher dimensional elements too) which simultanuously increase from zero to non-zero size (expansion). The inverse process, reducing one specific edge class in size down to zero is called contraction.
A corresponding continuous transition can interactively be done in this VRML.
Despite of those few provided examples, Stott expansion applies to all dimensions and all curvatures, i.e. spherical geometries as well as euclideans or hyperbolics.
To guarantee "semiregularity" (as she states it – nowadays we would ask for uniformity), the application was meant to be restricted to actions under the full symmetry of the to be considered polytopes, resp. to those symmetries the unmarked Dynkin symbols represent.
Exactly 100 years thereafter, i.e. in 2013, Klitzing extended her ideas onto partial applications as well, i.e. onto sets of bounding elements, which form a complete equivalence class under some subsymmetry only. – In general this would result in non-uniform polytopes.
The main concern however was to result in CRF (convex regular faced) polytopes at least. According sequences are displayed here below.
Only series which contain true CRFs or which are used within such of the next dimension.
† = subdimensional; ° = uniform; * = scaliform; _ = Johnson solid / CRF
---- 3D ----
o3o4o = point †° ↔ edge †° ↔ {4} †° ↔ o3o4x = cube °[1] x3o4o = oct ° ↔ esquidpy ↔ squobcu ↔ x3o4x = sirco °
o3o4o = point †° ↔ tet ° ↔ o3x4o = co °[2] x3o4o = oct ° ↔ tut ° ↔ x3x4o = toe °[3]
| o4o3a patex-o4o3a o4x3a :: tetrahedral ---+---------------------------- its 1st type of cells (in the right case for any "a", in the left only for "a" = "x"): 4 | . o3a . o3a -> . x3a :: triangular 4 | . o3a -> . x3a . x3a ---+---------------------------- its 2nd type of cells (only for "a" = "x"): 12 | o . a o . a o . a :: none ---+---------------------------- its 3rd type of cells (in the right case ever, in the left one never): 6 | o4o . -> pex-o4o -> o4x . :: axial
---- 4D ----
o3o3o4o = point †° ↔ edge †° ↔ {4} †° ↔ cube †° ↔ o3o3o4x = tes °[4] x3o3o4o = hex ° ↔ pex hex ↔ quawros ↔ pacsid pith ↔ x3o3o4x = sidpith ° o3x3o4o = ico ° ↔ pexic ↔ bicyte ausodip ↔ pacsrit ↔ o3x3o4x = srit ° x3x3o4o = thex ° ↔ pex thex ↔ pabex thex ↔ pacprit ↔ x3x3o4x = prit °
o3o4o3o = point †° ↔ hex ° ↔ rit ° ↔ o3x4o3o = rico °[5] x3o4o3o = ico ° ↔ thex ° ↔ tah ° ↔ x3x4o3o = tico °[6] o3o4o3x = (dual) ico ° ↔ poxic ↔ pocsric ↔ o3x4o3x = srico ° x3o4o3x = spic ° ↔ owau prit ↔ poc prico ↔ x3x4o3x = prico °
| a3o4o3b pox-a3o4o3b poc-a3o4x3b a3o4x3b :: hexadecachoral ---+------------------------------------------------- its 1st type of cells (in the right case for any "b", in the left only for "b" = "x"): 8 | . o4o3b -> . o4o3b patex-o4o3b . o4x3b :: tetrahedral 8 | . o4o3b patex-o4o3b -> patex-o4o3b . o4x3b 8 | . o4o3b patex-o4o3b . o4x3b -> . o4x3b ---+------------------------------------------------- its 2nd type of cells (in the right case for any "b" and "a" = "x", in the left only for "a" = "b" = "x"): 32 | a . o3b a . o3b a . o3b -> a . x3b :: triangular 32 | a . o3b a . o3b -> a . x3b a . x3b 32 | a . o3b -> a . x3b a . x3b a . x3b ---+------------------------------------------------- its 3rd type of cells (only for "a" = "b" = "x"): 96 | a3o . b a3o . b a3o . b a3o . b :: none ---+------------------------------------------------- its 4th type of cells (in the right case ever, in the left only for "a" = "x"): 24 | a3o4o . -> pex-a3o4o -> pac-a3o4x -> a3o4x . :: axial
---- 5D ----
o3o3o3o4o = point †° ↔ edge †° ↔ {4} †° ↔ cube †° ↔ tes †° ↔ o3o3o3o4x = pent °[7] x3o3o3o4o = tac ° ↔ ... ↔ ... ↔ ... ↔ ... ↔ x3o3o3o4x = scant ° o3x3o3o4o = rat ° ↔ ... ↔ ... ↔ ... ↔ ... ↔ o3x3o3o4x = span ° o3o3x3o4o = nit ° ↔ ... ↔ ... ↔ ... ↔ ... ↔ o3o3x3o4x = sirn ° x3x3o3o4o = tot ° ↔ ... ↔ ... ↔ ... ↔ ... ↔ x3x3o3o4x = cappin ° x3o3x3o4o = sart ° ↔ ... ↔ ... ↔ ... ↔ ... ↔ x3o3x3o4x = carnit ° o3x3x3o4o = bittit ° ↔ ... ↔ ... ↔ ... ↔ ... ↔ o3x3x3o4x = prin ° x3x3x3o4o = gart ° ↔ ... ↔ ... ↔ ... ↔ ... ↔ x3x3x3o4x = cogart °
This set of series seems to exist for all dimensions. (The other set of sequences provided in lower dimensions, seems to stick to those only. In fact, one clearly could extend that one step on to the family o3o3o *b3o *b3o (cf. the corresponding footnotes), but this one would then be a flat euclidean tetracomb, not a true 5D polytope.)
---- 3D = honeycombs ----
o4o3o4o = point †° ↔ aze †° ↔ squat †° ↔ o4o3o4x = chon °[8] x4o3o4o = chon ° ↔ chon ° ↔ chon ° ↔ x4o3o4x = chon °[9] o4x3o4o = rich ° ↔ pexrich ↔ pacsrich ↔ o4x3o4x = srich ° x4x3o4o = tich ° ↔ pextich ↔ pacprich ↔ x4x3o4x = prich ° o3o3x *b4o = octet ° ↔ pextoh * ↔ pacratoh * ↔ o3o3x *b4x = ratoh °
The last sequence could be considered as an alternating faceting of the second sequence: we have s4o3o4y = o3o3x *b4y (where y=o or y=x). Similarily one might ask about the further alternated faceting case. But that one does not provide anything new, within this symmetry it just reproduces the 3rd sequence: s4x3o4y = o4x3o4y.
---- 4D = tetracombs ----
o4o3o3o4o = point †° ↔ aze †° ↔ squat †° ↔ chon †° ↔ o4o3o3o4x = test °[10] x4o3o3o4o = test ° ↔ test ° ↔ test ° ↔ test ° ↔ x4o3o3o4x = test °[11] o4x3o3o4o = rittit ° ↔ ... ↔ ... ↔ ... ↔ o4x3o3o4x = sidpitit ° o4o3x3o4o = icot ° ↔ ... ↔ ... ↔ ... ↔ o4o3x3o4x = srittit ° x4x3o3o4o = tattit ° ↔ ... ↔ ... ↔ ... ↔ x4x3o3o4x = capotat ° x4o3x3o4o = srittit ° ↔ ... ↔ ... ↔ ... ↔ x4o3x3o4x = scartit ° x4x3x3o4o = grittit ° ↔ ... ↔ ... ↔ ... ↔ x4x3x3o4x = gicartit °
o3o3o4o3o = point †° ↔ hext ° ↔ rittit ° ↔ bricot ° ↔ o3o3o4x3o = ricot °[12] x3o3o4o3o = hext ° ↔ ... ↔ ... ↔ ... ↔ x3o3o4x3o = spaht ° o3x3o4o3o = icot ° ↔ ... ↔ ... ↔ ... ↔ o3x3o4x3o = sibricot ° o3o3o4o3x = icot ° ↔ thext ° ↔ batitit ° ↔ bithit ° ↔ o3o3o4x3x = ticot °[13] x3x3o4o3o = thext ° ↔ ... ↔ ... ↔ ... ↔ x3x3o4x3o = pataht ° x3o3o4o3x = scicot ° ↔ ... ↔ ... ↔ ... ↔ x3o3o4x3x = capoht ° o3x3o4o3x = spict ° ↔ ... ↔ ... ↔ ... ↔ o3x3o4x3x = paticot ° x3x3o4o3x = capicot ° ↔ ... ↔ ... ↔ ... ↔ x3x3o4x3x = capticot °
| a3b3o4o3c phextex-a3b3o4o3c pabhextex-a3b3o4o3c phextco-a3b3o4x3c a3b3o4x3c :: hexadecachoric-tetracombal ----+---------------------------------------------------------------------------------- its 1st type of cells (in the right case for any "b" and "c", in the left only for "b" = "x" or "c" = "x"): N | . b3o4o3c -> . b3o4o3c pox-b3o4o3c poc-b3o4x3c . b3o4x3c :: hexadecachoral N | . b3o4o3c pox-b3o4o3c -> pox-b3o4o3c poc-b3o4x3c . b3o4x3c N | . b3o4o3c pox-b3o4o3c poc-b3o4x3c -> poc-b3o4x3c . b3o4x3c N | . b3o4o3c pox-b3o4o3c poc-b3o4x3c . b3o4x3c -> . b3o4x3c ----+---------------------------------------------------------------------------------- its 2nd type of cells (in the right case only for "a" = "x", in the left only for "a" = "c" = "x"): 8N | a . o4o3c a . o4o3c a . o4o3c -> patex-o4o3a-p -> a . o4x3c :: tetrahedral 8N | a . o4o3c a . o4o3c -> patex-o4o3a-p patex-o4o3a-p a . o4x3c 8N | a . o4o3c a . o4o3c patex-o4o3a-p patex-o4o3a-p a . o4x3c 8N | a . o4o3c -> patex-o4o3a-p patex-o4o3a-p -> a . o4x3c a . o4x3c 8N | a . o4o3c patex-o4o3a-p patex-o4o3a-p a . o4x3c a . o4x3c 8N | a . o4o3c patex-o4o3a-p -> a . o4x3c a . o4x3c a . o4x3c ----+---------------------------------------------------------------------------------- its 3rd type of cells (in the right case only for "a" = "x" or "b" = "x", in the left only for ("a" = "x" or "b" = "x") and "c" = "x"): 32N | a3b . o3c a3b . o3c a3b . o3c a3b . o3c -> a3b . x3c :: triangular 32N | a3b . o3c a3b . o3c a3b . o3c -> a3b . x3c a3b . x3c 32N | a3b . o3c a3b . o3c -> a3b . x3c a3b . x3c a3b . x3c 32N | a3b . o3c -> a3b . x3c a3b . x3c a3b . x3c a3b . x3c ----+---------------------------------------------------------------------------------- its 4th type of cells (only for ("a" = "x" or "b" = "x") and "c" = "x"): 96N | a3b3o . c a3b3o . c a3b3o . c a3b3o . c a3b3o . c :: none ----+---------------------------------------------------------------------------------- its 5th type of cells (in the right case ever, in the left only for "a" = "x" or "b" = "x"): 12N | a3b3o4o . -> pex-a3b3o4o -> pabex-a3b3o4o -> pac-a3b3o4x -> a3b3o4x . :: axial
Aside: Some of the above partial Stott sequences (with uniforms only) can be re-written as classical ones too, using a lower symmetry right from the beginning:
© 2004-2013 | top of page |